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THREE-WAVE INTERACTIONS OF DISTURBANCES

IN A SUPERSONIC BOUNDARY LAYER

UDC 532.526N. M. Terekhova

Within the framework of the weakly nonlinear stability theory, group interaction of disturbances in a
supersonic boundary layer is considered. The disturbances are represented by two spatial packets of
traveling instability waves (wave trains) with multiple frequencies. The possibility of energy redistri-
bution in such wave systems in the case of three-wave resonant interactions of packet constituents is
considered. The model is used to test the dynamics of unstable waves arising due to introduction of
controlled high-intensity disturbances into a supersonic boundary layer. It is found that this mech-
anism is not the main one for the features of streamwise dynamics of such nonlinear waves being
observed.
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Introduction. Mechanisms of processes inherent in the laminar–turbulent transition in supersonic bound-
ary layers are extensively studied. This became possible after experimental investigations of nonlinear stages of
disturbance evolution and construction of theoretical models on the basis of experimental data.

Important results were obtained in studying the nonlinear evolution, the process of spectrum filling, and
identification of carrier frequencies for finite disturbances that cannot be considered as linear. For a supersonic
boundary layer, subharmonic instability is observed if the level of controlled disturbances is rather low [1, 2].
The laws of this subharmonic instability are qualitatively and quantitatively described by the nonlinear model of
interaction in resonant triads [3–6]. Three-dimensional modes prevail in the spectrum, and its filling is a cascade
process of identification of three-dimensional subharmonics in the parametric region.

If controlled disturbances of rather high intensity are introduced into a supersonic boundary layer on a
flat plate at a Mach number M = 2 [7], however, a situation arises that differs considerably from that described
above. The downstream evolution of such disturbances was called “anomalous” [7]. In the experiments of [7], it was
found that the initial spectrum of disturbances contains two wave packets with multiple frequencies (subharmonic
frequency f1 = 10 kHz and fundamental frequency f2 = 20 kHz); the packet with the frequency f1 dominates. The
wave packets are wave trains [8] with a wide spectrum in terms of the transverse wavenumber β, which contain
three-dimensional waves propagating at angles −90◦ 6 χ 6 90◦ to the main flow direction [χ = arctan (β/αr),
where αr is the longitudinal wavenumber]; the plane component with β = 0 has the highest intensity. These
wave trains are rather symmetric in terms of β within the entire interval under study. Further downstream, the
two-dimensional character of the wave spectra remains unchanged, though the linear stability theory predicts that
the growth rates of three-dimensional waves are much higher than the growth rates of plane waves. An increase in
intensity is observed for both three-dimensional and two dimensional waves, being particularly significant for the
latter. Kosinov et al. [7] believe that the experimental results described are caused by nonlinearity of the streamwise
dynamics of high-intensity oscillations.

In the present work, an attempt is made to find out whether it is possible to explain the above-described
phenomena by nonlinear interaction of the own traveling Tollmien–Schlichting disturbances within the framework
of interactions in resonant triads on the basis of the weakly nonlinear stability theory used to explain the dynamics
of disturbances at early stages of nonlinearity.
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Basic Formulas and Methods of Solution. The initial postulates of the nonlinear model of interaction
in resonant triads for compressible boundary layers are described in detail in [3, 4]. Following [3, 4], we consider
disturbed fields of velocity u, v, w, density ρ0, pressure p0, and temperature T0 of a compressible gas

u = U(Y ) + εu′, v = εv′, w = εw′, ρ0 = ρ(Y ) + ε%′,

p0 = P + εp′, T0 = T (Y ) + εΘ′, p′/P = %′/ρ+ Θ′/T
(1)

in a dimensionless coordinate system [the thickness δ =
√
µex/(Ueρe) is the characteristic linear size and µ is the

dynamic viscosity; the subscript e indicates free-stream parameters; the primed and nonprimed quantities are the
fluctuating and mean components of the corresponding quantities; the scale parameter is ε� 1]. Normalization is
performed to flow parameters at the outer boundary; the Reynolds and Mach numbers based on these parameters
are Re =

√
xρeUe/µe and M = Ue/ae (a is the velocity of sound). The dimensionless values of the longitudinal

coordinate X coincide with the value of Re. The method for obtaining distributions of U and T in the laminar flow
is described in [9]; ρ = 1/T .

The solution is constructed by the method of expansion in terms of the small parameter ε and two-scale
expansion of the x coordinate. In addition to the “fast” scale X, we introduce the “slow” scale ξ = εX characterizing
the difference in the rates of variation of the disturbance phase and amplitude. The possibility of introducing the
“slow” scale is conditioned by the large difference in the velocities mentioned.

We seek the solution for waves of the type

u′ = A(ξ)u(Y ) exp (iθ), θ =
∫
αdX +

∫
β dZ − ωt, (2)

where u′ is the streamwise component of velocity, A is the amplitude slowly changing along the streamwise coordi-
nate, u(Y ) is the amplitude eigenfunction, α = αr + iαi (αi < 0 is the growth rate), and the frequency ω = 2πf is
a real quantity.

Substituting Eqs. (1) and (2) into the full system of equations of motion and conservation for a compressible
gas [9], within the framework of the weakly nonlinear theory, we obtain the initial system for disturbances:

[ρ(Gu+ UY v) + iαp/(γM 2)− (µ/Re)uY Y ] exp (iθ) = Fu,

[ρGw + iβp/(γM 2)− (µ/Re)wY Y ] exp (iθ) = Fw,

[ρGv + pY /(γM 2)] exp (iθ) = Fv, [G%+ ρY v + ρ(iαu+ vY + iβw)] exp (iθ) = Fp, (3)

[ρ(GΘ + TY v) + (γ − 1)(iαu+ vY + iβw)− µγ/(σRe)ΘY Y ] exp (iθ) = FΘ,

% = ρ(p/P −Θ/T ), G = i(−ω + αU).

Here γ = CP /CV is the ratio of specific heats, σ = CPµe/K is the Prandtl number, and K is the thermal
conductivity. For F = 0, Eqs. (3) form a linearized system for three-dimensional disturbances [9].

The nonlinear terms in (3) have the following form:

Fu = ρ(u′u′X + v′u′Y + w′u′Z) + %′(u′t + Uu′X + UY v
′),

Fv = ρ(u′v′X + v′v′Y + w′v′Z) + %′(v′t + Uv′X),

Fw = ρ(u′w′X + v′w′Y + w′w′Z) + %′(w′t + Uw′X),

Fp = %′(u′X + v′Y + w′Z) + u′%′X + v′%′Y + w′%′Z ,

FΘ = %′(Θ′t + UΘ′X + TY v
′) + ρ(u′Θ′X + v′Θ′Y + w′Θ′Z) + 2γ(γ − 1)M 2p′(u′X + v′Y + w′Z).

The nonlinear effects determine the terms quadratic in amplitude in the nonlinear terms.
The boundary conditions for disturbances are

u = v = Θ = 0, Y = 0, Y =∞.
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In the first-order approximation in terms of ε, the homogeneous system (3) is the basic one for finding
the eigenvalues of α for given values of the frequency ω and Reynolds number Re and also for constructing the
amplitude functions of the linear waves of the form (2) with normalization |v|kn = 1, where vkn is the value of v in
the final coordinate of integration Ykn = 15 (the boundary-layer thickness corresponds to Y = 7). In the weakly
nonlinear theory, these parameters of the linear waves are considered to be sought, and nonlinearity affects only the
amplitude A.

First, let us analyze the nonlinear evolution of disturbances satisfying the conditions of phase synchronism,
for which θj = θl + θk. Usually, j 6= l 6= k but there may be triplets with l = k. For such three-wave systems, the
amplitude equations can be obtained using a standard procedure of averaging and solvability conditions [4]:

dAj
dξ

= −αijAj +
N∑
l,k

Sl,kAlAk exp (−i∆j,l,k),
(4)

dAl
dξ

= −αilAl +
N∑
j,k

Sj,kAjA
∗
k exp (i∆j,l,k),

dAk
dξ

= −αikAk +
N∑
j,l

Sj,lAjA
∗
l exp (i∆j,l,k).

The coefficients S expressed through the nonlinear terms F of system (3) characterize the force field generated by
interacting waves. The terms with ∆ take into account possible detuning of the wave relation in triplets in terms
of αr:

∆j,l,k = Real
(∫

(αj − αl − αk) dX
)
.

We write the complex amplitudes A in a trigonometric form

A = a exp (iψ), a = |A|, ψ = argA

and solve Eqs. (4) with respect to a and ψ. The initial conditions for the amplitudes are set in accordance with the
experimental distributions of mass velocities of the waves (intensities I) in the initial cross section X0. The relation
between the oscillation amplitudes a and intensities I can be expressed via the calculated values of fluctuations of
mass velocity of the waves m = ρu+ %U :

Ij(X0) = aj(X0)mj(Ymax) exp (−αijX0).

The value Y = Ymax corresponds to the transverse coordinate with the maximum value of m of the most intense
two-dimensional wave with the subharmonic frequency. For the values of Re considered, this coordinate remained
constant: Ymax = 4.35. The initial phases were assumed to be arbitrary; in the basic variant, ψj(X0) = 0.

Results and Discussion. In the experiments of [7], the measurements were performed in the range
x = 60–110 mm, which corresponded to the values of the Reynolds number 624 6 Re 6 846. The stagnation
temperature was constant and equal to 310 K, γ = 1.4, and σ = 0.72. The dimensionless frequencies were
introduced by means of the frequency parameter F (ω = F Re), thus, we had F1 = 19.2 · 10−6 and F2 = 2F1.
The calculations were performed for the same parameters.

We considered the group interaction of wave trains obtained in [7]. Integration in (2) was replaced by
summation; therefore, the real wave trains in terms of transverse wavenumbers β were replaced by a set of N
discrete wave modes. In the present work, we had N = 7. For each wave mode, the dimensionless wavenumbers
b = 10−3β/Re were constant. Figure 1 shows the scheme of division of the wave trains (b = 0 corresponded to the
most energy-carrying two-dimensional components).

Figure 2 shows the growth rates −αi of linear waves with the frequency parameters F1 for the subharmonic
and F2 for the fundamental frequency within the considered range of Reynolds numbers for the examined values
of b. The initial position of the two-dimensional component of the subharmonic is the region near the lower branch
of the neutral curve; its linear growth rate increases with increasing Re and does not reach a maximum in the final
measurement cross section. The growth rates of three-dimensional components are usually much higher than the
growth rates of this mode. The highest growth rates are observed for the three-dimensional mode with b1 = 0.077.

For the initial value of Re, the growth rate of the main wave with the parameter F2 (Fig. 2b) is close to the
maximum of the linear growth rate in the region of instability; further downstream, its values approach the upper
branch of the neutral curve. As in Fig. 2a, the growth rates of three-dimensional modes are higher than the growth
rates of the plane component. This feature is violated only for the three-dimensional mode with a large azimuthal
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Fig. 1. Scheme of division of the wave trains into discrete components of the considered azimuthal
wave parameters b for the dimensionless frequency parameters F1 (1) and F2 (2).
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Fig. 2. Linear growth rates −αi(Re) of the considered modes with the frequency parameters F1 (a)
and F2 (b): curve 0 is the two-dimensional component (b0 = 0) and curves 1–3 are the three-
dimensional components [b1 = 0.077 (1), b2 = 0.154 (2), and b3 = 0.231 (3)].

parameter b3 = 0.231: oblique waves inclined at an angle χ ≈ 85◦ to the plane of the flow; the intensity of these
waves is not very high.

For seven components of the wave trains, the conditions of phase synchronism allow us to form 20 triplets
(the superscripts 1 and 2 indicate phases of modes with the frequency parameters F1 and F2, respectively; the
subscripts correspond to the subscripts of the parameter b):

θ2
0 = θ1

0 + θ1
0, θ2

0 = θ1
1 + θ1

−1, θ2
0 = θ1

2 + θ1
−2, θ2

0 = θ1
3 + θ1

−3, θ2
1 = θ1

0 + θ1
1, θ2

1 = θ1
2 + θ1

−1,

θ2
1 = θ1

3 + θ1
−2, θ2

2 = θ1
0 + θ1

2, θ2
2 = θ1

3 + θ1
−1, θ2

2 = θ1
1 + θ1

1,

θ2
3 = θ1

0 + θ1
3, θ2

3 = θ1
2 + θ1

1, θ2
−1 = θ1

0 + θ1
−1, θ2

−1 = θ1
1 + θ1

−2, θ2
−1 = θ1

2 + θ1
−3, (5)

θ2
−2 = θ1

0 + θ1
−2, θ2

−2 = θ1
1 + θ1

−3, θ2
−2 = θ1

−1 + θ1
−1,

θ2
−3 = θ1

0 + θ1
−3, θ2

−3 = θ1
−2 + θ1

−1.

With allowance for the symmetry of the wave trains, we can confine ourselves to considering the triplets for
positive values of b only; the number of triplets decreases to 12 thereby.

Figure 3 shows the wave detuning ∆(Re) for typical triplets. As compared to the values of αr, this detuning
is not large; therefore, these triplets can affect the values of the corresponding amplitudes determined by Eqs. (4).
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Fig. 3. Detuning in terms of wavenumbers in triplets (5).
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Fig. 4. Dynamics of intensities of the considered modes with the frequency parameters F1 (a) and F2 (b): curve 0 is
the two-dimensional component (b0 = 0) and curves 1–3 are the three-dimensional components [b1 = 0.077 (1), b2 = 0.154
(2), and b3 = 0.231 (3)]; the solid and dashed curves refer to the nonlinear and linear models, respectively.

Within the framework of the model considered, we analyze the resultant nonlinear intensities I of the
wave modes with the parameter F1 (Fig. 4a). The dashed curves correspond to calculations by the linear model:
Ilin(X) = a(X0)m(Ymax) exp (−αiX).

Allowance for nonlinearity leads to an increase in intensity of the plane wave with the subharmonic frequency;
for Re = 846, the value of I is 1.5 times greater than that calculated by the linear model. For the most intense
three-dimensional component with b1 = 0.077, the calculation results of intensity by the nonlinear model show that
its value exceeds that calculated by the linear model by a factor of 1.2. At the same time, the mode with b2 = 0.154
develops almost linearly. It follows from Fig. 4a that the intensity of the three-dimensional mode with b3 = 0.231
decreases on the major part of the interval considered, and its values are significantly lower than those calculated
by the linear model.
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Thus, in the case of group interaction, energy redistribution is directly proportional to the angles of incli-
nation of the wave modes to the plane of the main flow; the greatest portion of energy is obtained by the plane
wave. This process can lead to wave-train constriction in terms of the transverse wavenumbers at the subharmonic
frequency, which corresponds to the process actually observed. At the same time, the portion of energy obtained
by the plane wave is not large, and the nonlinear interaction in resonant triplets cannot be the reason for the
predominant growth of this component observed in reality.

The nonlinear dynamic of components of the main wave with the parameter F2 has a smaller effect on the
process of wave interaction because of the considerably lower initial intensities (Fig. 4b). In this case, a significant
increase in I is observed for the two-dimensional mode for Re > 800; therefore, for Re = 846, the intensity of the
two-dimensional component becomes higher than the intensity of the three-dimensional mode, which agrees with
the data of [7]. It follows from Fig. 4b that three-dimensional modes with b1 = 0.077 and b2 = 0.154 develop almost
linearly in accordance with the dependences αi(Re) (see Fig. 2b).

It should be noted that some features obtained in analyzing interactions of wave trains in the regime of
three-wave resonant systems is in qualitative agreement with the observed streamwise dynamics of wave packets.
Nevertheless, the nonlinear interaction considered is not the main one in the process of energy redistribution in high-
intensity wave trains. Obviously, the physical processes inherent in the downstream evolution of such disturbances
are more complicated. An adequate theoretical description of these processes requires unification of the resonant
and combinatorial second-order models of interaction [10] and also investigation of the influence of disturbances
of different types, in particular, steady disturbances [11] whose existence was noted in [7], on the wave-packet
dynamics.
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